COURSE CODE:	ENE-423		
COURSE NAME:	Air and Noise	e Pollution Cor	ntrol
CREDIT HOURS:	Theory = 3	Practical = 0	Total = 3
CONTACT HOURS:	Theory = 48	Practical = 0	Total = 48
PREREQUISITE:	Introduction t	to Air and Nois	e Pollution
MODE OF TEACHING:	Three hours	of lecture per v	week

COURSE DESCRIPTION:

This course is designed to familiarize the students of environmental Engineering with the atmosphere and the prevalent pollutants in it. The course is divided into three parts mainly. In the first part, students are introduced to the major air pollutants, their sources and effects, basic concepts of the air pollution, sampling and measuring techniques, the meteorological processes that govern the dispersion and transfer of pollutants and basic models used in the ambient air quality determination. The second part covers air pollution control techniques in which students learn about the design aspects of the major air pollution control equipment. The third and last part of the course covers noise pollution, its impact and mitigation techniques.

The course also includes practical sessions in which the students get hands-on experience with the major air pollutants measuring instruments.

COURSE OBJECTIVES:

The main objective of this course is to provide a comprehensive package of the concepts related to design of the technology used for the control of gaseous and particulate air pollution as well as management and control of noise pollution.

PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

Engineering Knowledge:		7	Environment and Sustainability:	\checkmark
Problem Analysis:		8	Ethics:	
Design/Development of Solutions:		9	Individual and Teamwork:	
Investigation:		10	Communication:	
Modern Tool Usage:		11	Project Management:	
	Engineering Knowledge: Problem Analysis: Design/Development of Solutions: Investigation: Modern Tool Usage:	Problem Analysis: Design/Development of Solutions: Investigation:	Problem Analysis:□8Design/Development of Solutions:□9Investigation:□10	Problem Analysis:□8Ethics:Design/Development of Solutions:□9Individual and Teamwork:Investigation:□10Communication:

6 The Engineer and Society: 2 12 Lifelong Learning:

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student will demonstrate competency by being able to:

Sr. No.	CLO	Domain	Taxonomy Level	PLO
1	EXPLAIN the basics of policy and technical aspects of air and noise pollution control	Cognitive	2	6
2	ANALYSE the operation, design, and maintenance of various stationary and mobile air pollution control technologies	Cognitive	4	2

PRACTICAL APPLICATIONS:

Most of the Pakistan's bigger cities are currently included in the lists of the cities having the most polluted atmospheres in the world. Despite this fact, the country lacks the basic infrastructure to monitor and manage its air quality. This course will enable the students to understand the importance of air quality and equip them with the basic knowledge of managing the air quality in an efficient way.

TOPICS COVERED:

Week	Topic Covered	Reading Assignment/ Homework	CLO #
1	Air Pollution Regulations: US Clean Air Act	Chapter 1	
	(CAA) 1990, Pakistan Environmental Protection Act		1
	(PEPA) 1997, Environmental Standards, US-EPA,		I
	WHO, and Pak-NEQS		
2	Measurement Fundamentals: Gas flowrates and	Chapter 1	1
	Temperature/Pressure Conditions, Ideal Gas Laws		I
3	Fundamentals of Combustion Systems and their	Chapter 1	
	link with Pollutants: Boilers, Furnaces, Internal	Quiz 1	1
	Combustion Engines, Gas Turbines		
4	Stationary Source Control (PM): Particle	Chapter 2	
	Collection Mechanisms, Fluid–Particle Dynamics,	Assignment 1	2
	Particle Sizing and Measurement Methods		
5	Stationary Source Control (PM): Particle Size	Chapter 2	2
	Distribution, Collection Efficiency	Quiz 2	2

-			
6	Stationary Source Control (PM): Gravity	Chapter 2	
	Settling Chambers (Operations, Design and	Assignment 2	2
	Maintenance)		
7	Stationary Source Control (PM): Cyclones (Types,	Chapter 2	2
	Operations, Design and Maintenance)		2
8	Stationary Source Control (PM): Electrostatic	Chapter 2	2
	Precipitators (Operations, Design and Maintenance)	Quiz 3	2
9	Mid Semester Exam		
10	Stationary Source Control (PM): Scrubbers and	Chapter 2	
	Baghouse (Types, Operations, Design and	Assignment 3	2
	Maintenance)		
11	Stationary Source Control (Gases): Adsorbers	Chapter 3	2
	(Types, Operations, Design and Maintenance)		2
12	Stationary Source Control (Gases): Incinerators	Chapter 3	2
	(Types, Operations, Design and Maintenance)	Quiz 5	2
13	Stationary Source Control (Gases): Absorbers	Chapter 3	
	(Types, Operations, Design and Maintenance)	Assignment 4	2
14-15	Mobile Source Control (Gasoline Vehicles): Three-	Chapter 4	
	way catalytic Converter (Operations, Design and		2
	Maintenance)		
16	Mobile Source Control (Diesel Vehicles): Selective	Chapter 5	
	catalytic Converter (Operations, Design and	Quiz 6	2
	Maintenance)		
17	Noise Pollution Control (Types, Operation, Design	Chapter 6	2
	and Maintenance)		2
18	End Semester Exam		
1			

Practical:

Not Applicable.

TEXT AND MATERIAL:

Textbook (s)

- 1- Energy and Environment, Willey, 2nd Ed. 2005
- 2- Lecture Notes

References Material: (Books available in soft)

1- Turner, Wayne C., and Steve Doty. *Energy management handbook*. The Fairmont Press, Inc., 2007.

2- Moss, Keith J. Energy management in Buildings. Taylor & Francis, 2006.

Theoretical/Instruction	100%
Assignments	10%
Quizzes	15%
Mid Semester Exam	25%
End Semester Exam	50%
Practical Work	0%
Lab Attendance	0%
Lab Report	0%
Lab Quiz	0%
Lab Rubrics	0%